Fluid models of free energy cascade dynamics

William Dorland, Kate Despain July 21, 2010

University of Maryland

Tokamak Turbulence

Gyrofluid Models for Tokamak Turbulence

- Gyrofluids are computationally efficient
- Problem with models in the past

"Comparisons and physics basis of tokamak transport models and turbulence simulations", Dimits, et al. Physics of Plasmas, 2000.

Nonlinear Phase Mixing - Physical Space

- Contours of a sinusoidal electrostatic potential
- Density perturbation with Maxwellian velocity distribution

"Nonlinear Phase Mixing and Phase-Space Cascade of Entropy in Gyrokinetic Plasma Turbulence", Tatsuno, T., et al., PRL 2009.

Linear (Parallel) Phase Mixing - Velocity Space

■ Contours of $\delta f/F_0 \propto \cos(k_z(z-v_z t))$

Linear (Parallel) Phase Mixing - Velocity Space

■ Structure in z becomes structure in v_z

Nonlinear Phase Mixing - Velocity Space

$$\frac{\partial \delta f}{\partial t} + \langle \mathbf{v}_E \rangle \cdot \nabla \delta f = 0 \; ; \; \delta f \propto \cos(k_y (y - \langle v_E \rangle t))$$

Closure Terms

$$\frac{\partial q_{\parallel}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\parallel} + \left(3 + \beta_{\parallel}\right) \nabla_{\parallel} T_{\parallel} + \sqrt{2} D_{\parallel} \left| k_{\parallel} \right| q_{\parallel} + i \omega_{d} \left(-3 q_{\parallel} - 3 q_{\perp} + 6 u_{\parallel}\right) + \left|\omega_{d}\right| \left(\nu_{5} u_{\parallel} + \nu_{6} q_{\parallel} + \nu_{7} q_{\perp}\right) = -\nu_{ii} q_{\parallel}$$

$$\frac{\partial q_{\perp}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\perp} + \left[\frac{1}{2} \hat{\nabla}_{\perp}^{2} \mathbf{v}_{\Psi} \right] \cdot \nabla u_{\parallel} + \left[\hat{\hat{\nabla}}_{\perp}^{2} \mathbf{v}_{\Psi} \right] \cdot \nabla q_{\perp} + \nabla_{\parallel} \left(T_{\perp} + \frac{1}{2} \hat{\nabla}_{\perp}^{2} \Psi \right)
+ \sqrt{2} D_{\perp} \left| k_{\parallel} \right| q_{\perp} + \left(T_{\perp} - T_{\parallel} + \hat{\hat{\nabla}}_{\perp}^{2} \Psi - \frac{1}{2} \hat{\nabla}_{\perp}^{2} \Psi \right) \nabla_{\parallel} \ln B
+ i \omega_{d} \left(-q_{\parallel} - q_{\perp} + u_{\parallel} \right) + \left| \omega_{d} \right| \left(\nu_{8} u_{\parallel} + \nu_{9} q_{\parallel} + \nu_{10} q_{\perp} \right) = -\nu_{ii} q_{\perp}$$

Closure terms to model parallel phase mixing

Closure Terms

$$\frac{\partial q_{\parallel}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\parallel} + (3 + \beta_{\parallel}) \nabla_{\parallel} T_{\parallel} + \sqrt{2} D_{\parallel} \left| k_{\parallel} \right| q_{\parallel} + i \omega_{d} \left(-3q_{\parallel} - 3q_{\perp} + 6u_{\parallel} \right)$$

$$+ \left| \omega_{d} \right| \left(\mathbf{v}_{5} u_{\parallel} + \mathbf{v}_{6} q_{\parallel} + \mathbf{v}_{7} q_{\perp} \right) = -\mathbf{v}_{ii} q_{\parallel}$$

$$\frac{\partial q_{\perp}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\perp} + \left[\frac{1}{2} \hat{\nabla}_{\perp}^{2} \mathbf{v}_{\Psi} \right] \cdot \nabla u_{\parallel} + \left[\hat{\hat{\nabla}}_{\perp}^{2} \mathbf{v}_{\Psi} \right] \cdot \nabla q_{\perp} + \nabla_{\parallel} \left(T_{\perp} + \frac{1}{2} \hat{\nabla}_{\perp}^{2} \Psi \right)
+ \sqrt{2} D_{\perp} \left| k_{\parallel} \right| q_{\perp} + \left(T_{\perp} - T_{\parallel} + \hat{\hat{\nabla}}_{\perp}^{2} \Psi - \frac{1}{2} \hat{\nabla}_{\perp}^{2} \Psi \right) \nabla_{\parallel} \ln B
+ i \omega_{d} \left(-q_{\parallel} - q_{\perp} + u_{\parallel} \right) + \left| \omega_{d} \right| \left(\mathbf{v}_{8} u_{\parallel} + \mathbf{v}_{9} q_{\parallel} + \mathbf{v}_{10} q_{\perp} \right) = -\mathbf{v}_{ii} q_{\perp}$$

Closure terms to model toroidal phase mixing by curvature and ∇B drifts

Closure Terms

$$\frac{\partial q_{\parallel}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\parallel} + (3 + \beta_{\parallel}) \nabla_{\parallel} T_{\parallel} + \sqrt{2} D_{\parallel} |k_{\parallel}| q_{\parallel} + i \omega_{d} (-3q_{\parallel} - 3q_{\perp} + 6u_{\parallel})
+ |\omega_{d}| (\mathbf{v}_{5}u_{\parallel} + \mathbf{v}_{6}q_{\parallel} + \mathbf{v}_{7}q_{\perp}) = -\mathbf{v}_{ii}q_{\parallel}$$

$$\frac{\partial q_{\perp}}{\partial t} + \mathbf{v}_{\Psi} \cdot \nabla q_{\perp} + \left[\frac{1}{2}\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}\right] \cdot \nabla u_{\parallel} + \left[\hat{\nabla}_{\perp}^{2}\mathbf{v}_{\Psi}\right] \cdot \nabla q_{\perp} + \nabla_{\parallel}\left(T_{\perp} + \frac{1}{2}\hat{\nabla}_{\perp}^{2}\Psi\right) \\
+ \sqrt{2}D_{\perp} \left|k_{\parallel}\right| q_{\perp} + \left(T_{\perp} - T_{\parallel} + \hat{\nabla}_{\perp}^{2}\Psi - \frac{1}{2}\hat{\nabla}_{\perp}^{2}\Psi\right) \nabla_{\parallel} \ln B \\
+ i\omega_{d} \left(-q_{\parallel} - q_{\perp} + u_{\parallel}\right) + \left|\omega_{d}\right| \left(\mathbf{v}_{8}u_{\parallel} + \mathbf{v}_{9}q_{\parallel} + \mathbf{v}_{10}q_{\perp}\right) = -\mathbf{v}_{ii}q_{\perp}$$

Missing: closure terms to model nonlinear phase mixing by ${f E} \times {f B}$ drifts

Nonlinear Phase Mixing Closure

$$q_{\parallel} \propto \int_{-\infty}^{\infty} v_{\parallel}^{3} \left[\nabla \cdot \left(F \frac{c}{B} \hat{\mathbf{b}} \times \nabla \Phi \right) - \nabla \cdot \left(F \frac{c}{B} \hat{\mathbf{b}} \times \nabla \frac{k_{\perp}^{2} v_{\perp}^{2}}{4\Omega_{i}^{2}} \Phi \right) + \nabla \cdot \left(F \frac{c}{B} \hat{\mathbf{b}} \times \nabla \frac{k_{\perp}^{4} v_{\perp}^{4}}{64\Omega_{i}^{4}} \Phi \right) + \cdots \right] d^{3}v$$

Consider the effect of the first two terms

$$\frac{\partial f}{\partial t} + \hat{\mathbf{b}} \times \left(1 - \frac{k_{\perp}^2 v_{\perp}^2}{4\Omega^2}\right) \nabla \Phi_0 e^{ik_x x} \cdot \nabla f = 0$$

$$f = F_M e^{ik_y y} e^{\left(\frac{k_\perp^2 v_\perp^2}{4\Omega^2}\right) ik_x \Phi k_y t}$$

$$q_{\parallel}(t) \propto \frac{e^{-ik_{y}(k_{x}\Phi)t}}{1 - k_{y}k_{x}^{2}\rho_{i}^{2}(k_{x}\Phi)t}$$

Model with a damping term:
$$|\mathbf{v}_{pm}| \left| \frac{1}{2} \hat{\nabla}_{\perp}^2 \mathbf{v}_{\Psi} \cdot \nabla \right| q_{\parallel}$$

NLPM Closure

$$\left| \frac{\partial}{\partial t} \rightarrow \frac{\partial}{\partial t} + \mathbf{v}_{pm} \left| \frac{1}{2} \hat{\nabla}_{\perp}^2 \mathbf{v}_{\Psi} \cdot \nabla \right| \right|$$

Simplify further to

$$\mathbf{v}_{pm}' = \mathbf{v}_{pm} \sum_{k_x} \frac{1}{2} \left| \hat{\nabla}_{\perp}^2 \mathbf{v}_{y} \right|$$

$$\left| \frac{\partial}{\partial t}
ightarrow rac{\partial}{\partial t} + \mathbf{v}_{pm}' \left| k_{\mathrm{y}} \right| \right|$$

- Proportional to k_{\perp}^4
- \blacksquare Proportional to magnitude of v_y
- Direction of the flow is irrelevant

NLPM Results

- Cyclone Base Case ITG Turbulence
- Trapped Particle Scan ε (r/R) scan
- **■** ETG
- General Geometry Case
- Local vs. Global

Cyclone Base Case (ITG)

"Comparisons and physics basis of tokamak transport models and turbulence simulations", Dimits, et al. Physics of Plasmas, 2000.

Trapped Particle Scan

"Comparisons and physics basis of tokamak transport models and turbulence simulations", Dimits, et al. Physics of Plasmas, 2000.

ETG

"Electron temperature gradient driven turbulence", Jenko, F., et al. Physics of Plasmas, 2000.

General Geometry

"Dimits Shift in Realistic Gyrokinetic Plasma-Turbulence Simulations", Mikkelsen, D.R. and Dorland, W. PRL 2008.

Local vs. Global

r/a	Global GK $(\frac{\rho^2 v_t}{L_n})$	Local GK $(\frac{\rho^2 v_t}{L_n})$	Local GF $(\frac{\rho^2 v_t}{L_n})$
0.4	1.25	1.25	1.8
0.5	2.4	2.4	2.3
0.6	2.6	2.8	3.0

[&]quot;The local limit of global gyrokinetic simulations", Candy, J, et al. PoP 2004"

NLPM Study Conclusions

- Nonlinear Phase Mixing introduces physically-motivated damping
- Model appears to overdamp at larger gradients in general geometry
- Unclear that we have captured original behavior of the gryffin code
- Like to include improved zonal flow closure by Beer & Hammett
- Overall, NLPM improves turbulent flux predictions

Tokamak: Transport

Equations from Barnes' code, Trinity

$$\frac{\partial n}{\partial \tau} = -\frac{\partial \psi}{\partial V} \frac{\partial}{\partial \psi} \left(\frac{\partial V}{\partial \psi} \langle \langle \mathbf{\Gamma} \cdot \nabla \psi \rangle \rangle \right) + C + \langle \langle S_n \rangle \rangle$$

$$\frac{\partial \langle L \rangle_t}{\partial t} = -\sum_s \frac{\partial \psi}{\partial V} \frac{\partial}{\partial \psi} \left(\frac{\partial V}{\partial \psi} \langle \langle \mathbf{\Pi} \cdot \nabla \psi \rangle \rangle \right) + \sum_s \langle \langle S_{L_s} \rangle \rangle$$

$$\frac{3}{2} \frac{\partial p}{\partial \tau} = -\frac{\partial \psi}{\partial V} \frac{\partial}{\partial \psi} \left[\frac{\partial V}{\partial \psi} \langle \langle \mathbf{Q} \cdot \nabla \psi \rangle \rangle \right] + C + \langle \langle S_p \rangle \rangle + \text{equil}$$

"Direct multiscale coupling of a transport code to gyrokinetic turbulence codes", M. Barnes, I. G.

Abel, W. Dorland, T. Görler, G. W. Hammett, and F. Jenko Phys. Plasmas 17, 056109 (2010)

Trinity: Flux Surfaces

Trinity and GPUs

- Trinity solved on CPU
- Many copies of turbulence code run at each time step
- Gyrofluid code on GPU
- Massively parallel operation!
- Requires demonstration of gryffin working on a GPU

GPU

- Ported simplified version of gryffin to GPU
 - 25x speed up
- Credible turbulence calculation on the GPU
- Multi-GPU code for single turbulence calculation
 - Slow
- Determined practical approach: One turbulence calculation/GPU

Future Work

- Use model we have derived and code we have tested to explore parameter space in solar wind conditions
- Continue validation and full updating of resurrected code gryffin
- Apply experience to complete the port of gryffin and Trinity to GPU

Future Work

- Use model we have derived and code we have tested to explore parameter space in solar wind conditions
- Continue validation and full updating of resurrected code gryffin
- Apply experience to complete the port of gryffin and Trinity to GPU
- Find viable, new magnetic confinement configurations!

Orzsag-Tang

Orszag-Tang

AB3/BDF2

Adams-Bashforth 3rd order/Backwards Difference Formula 2nd order

$$\frac{3}{2}u_{n+1} - 2u_n + \frac{1}{2}u_{n-1}
= \frac{8\Delta t}{3}N(u_n) - \frac{7\Delta t}{3}N(u_{n-1}) + \frac{2\Delta t}{3}N(u_{n-2}) + L(u_{n+1})$$

where u is the state vector, N() is the nonlinear operator, and L() is the linear operator.

ITG 25x Speed Up

Figure 3: Dependences of the wall clock time for execution of 100 time steps in the pseudospectral method for serial CPU implementation (the squares) and for the GPU (the circles).